变送器是什么

变送器是将传感器的输出信号转换成控制器可以识别的信号的转换器(或者是将传感器输入的非电转换成电信号并放大进行远程测量和控制的信号源)。传感器和变送器一起构成自动控制监控信号源。不同的物理量需要不同的传感器和相应的变送器。发射机有很多种。工业控制仪表中使用的变送器主要包括温度变送器、压力变送器、流量变送器、电流变送器、电压变送器等。发射机

  应用于工业领域并能输出标准信号的传感器称为变送器。术语变送器(图1)有时与传感器一起使用。

  在《自动控制原理》中,变送器是将传感器的输出信号转换成控制器可以识别的信号的转换器。有时与传感器一起使用是很常见的,因为大多数现代传感器的输出信号是通用控制器可以接收的信号,并且该信号可以由控制器直接识别,而无需由发射器转换。所以“变送器”的传统含义应该是:“将传感器的输出信号转换成控制器或测量仪器可以接受的标准信号的仪器”。在自动控制中:信号源-传感器-发射器-操作员控制器-执行器-控制输出。

  发射机有很多种。一般来说,变送器向二次仪表发送信号,使二次仪表显示测量数据。

  将物理测量信号或普通电信号转换成标准电信号输出或通过通信协议输出的设备。一般分为:温湿度变送器、压力变送器、差压变送器、液位变送器、电流变送器、电量变送器、流量变送器、重量变送器等。

  1.过载保护被应用于传输发射机(图2);发射机

  2.输出过流限制保护;

  3.输出电流的长期短路保护;

  4.双线端口瞬态感应闪电和浪涌电流瞬态抑制保护;

  5.工作电源过压极限保护35V;

  6.工作电源的反接保护。

  变送器是中文名称,英文是:变送器

  顾名思义,发射器的意思是“改变”和“发送”。

  所谓“变换”,是指将各种物理量从传感器转换成电信号。比如用热电偶把温度转换成电势;电流互感器用于将大电流转换成小电流。因为电信号最容易处理,所以现代发射机把各种物理信号转换成电信号。所以,我们说发射器,通常就变成了“电”。

  所谓“发送”,是指再次通过电子电路统一来自传感器的各种变化的电信号(如4-20MA),以方便其他仪器或控制装置的接收和传输。该方法由多个运算放大器实现。这种“变”“发”构成了现代最常用的发射器。

  比如SST3-AD就是一种将电流互感器的输出电流转换成标准的4-20MA的电流互感器;另一个例子是SST4-LD,它可以将重量传感器的重量信号转换成标准的4-20MA重量变送器。[1]

  生产资料市场化后,激烈的竞争加剧,发射机(图三)真假难辨。由于变送器是一门边缘学科,很多工程设计人员对其并不熟悉,一些厂家的工业级和民用商用级指标也比较混乱(工业级的价格是民用商用级的2-3倍)。

  以常用的0.5级精度电流电压变送器为例,可采用以下方法来区分真假:

  1.基准应该是稳定的,4mA是对应的输入零基准,基准不稳定,所以要讨论精度线性度。冷启动3分钟内4mA的零点漂移变化不应超过4.000ma 0.5% 0.5%以内;(即3.98-4.02毫安),250 负载时的压降为0.995-1.005伏,国外IC芯片普遍采用昂贵的能隙基准,温漂系数变化10ppm每度;

  2.总消耗量

  3.当工作电压为24.000伏,满量程读数为20.000毫安时,满量程读数不会因负载0-700的变化而变化;0.5%以内的变化不得超过20.000毫安0.5%;

  4.当满量程为20.000毫安,负载为250时,变送器的满量程读数(图4)不会因工作电压从15.000 V变为30.000 V而改变;0.5%以内的变化不得超过20.000毫安0.5%;

  5.一次侧过载时,输出电流在10%以内不得超过25.000毫安,否则,PLC/DCS中变送器的24V工作电源和A/D输入箝位电路会因功耗过大而损坏。此外,发射机中的发射极输出也会因功耗过大而受损,而那些没有A/D输入箝位电路的将遭受更大的损失。

  6.工作电压在24V反向时,变送器不得损坏,必须进行极性保护。

  7.当因感应雷和感应浪涌导致两条线之间的电压超过24V时,应夹紧,不得损坏变送器;一般1-2个TVS暂态保护二极管并联在两条线之间1.5KE可以每20秒抑制一次20毫秒脉冲宽度的正负脉冲冲击,暂态冲击功率为1.5kw-3kw;

  8.产品标签的线性度是0.5%是绝对误差还是相对误差,可以通过以下方法一目了然:以下指标为0.5%的真实线性度;

  一次输入为零时输出4mA0.5%(3.98-4.02mA),变送器负载250上的压降(图5)为0.995-1.005V;

  一次输入为10%时输出5.6毫安0.5%(5.572-5.628毫安),负载250欧姆压降1.393-1.407v;

  一次输入为25%时输出8mA0.5%(7.96-8.04mA),负载250上的压降为1.990-2.010V;

  一次输入50%时输出12mA0.5%(11.94-12.06毫安),负载250压降2.985-3.015V;

  当主输入为75%时,负载250上的输出电压为16毫安0.5%(15.92-16.08毫安)

降为3.980-4.020V;
  原边输100%时输出20mA正负0.5%(19.90-20.10mA)负载250Ω上的压降为4.975-5.025V。
  9、原边输入过载时必须限流: 变送器(图6)原边输入过载大于125%时输出过流限制25mA+10%(25.00-27.50mA)负载250Ω上的压降为6.250-6.875V;
  10、感应浪涌电压超过24V时有无箝位的辨别:在两线输出端口并一个交流50V指针式表头,用交流50V接两根线去瞬间碰一下两线输出端口,看有无箝位,箝位多少伏可一目了然啦;
  11、有无极性保护的辨别:用指针式万用表Ω乘10K档正反测量两线输出端口,总有一次Ω阻值无限大,就有极性保护;
  12、有无极输出电流长时间短路保护:原边输入100%时或过载大于125%-200%时,将负载250Ω短路,测量短路保护限制是否在25mA+10%;
  13、工业级别和民用商用级别的辨别:工业级别工作温度范围是-25度到+70度,温漂系数是每度变化100ppm,即温度每度变化1度,精度变化为万分之一;民用商用级别工作温度范围是0度(或-10度)到+70度(或+50度),温漂系数是每度变化250ppm,即温度每度变化1度,精度变化为万分之二点五;电流电压变送器的温漂系数可以用恒温箱或高低温箱来试验验证较繁琐。
  上述13种方法同样可用与其它变送器真假优劣的辨别。
  1、安装时应使变送器的压力敏感件轴向垂直于重力方向, 变送器(图7)如果安装条件限制,则应安装固定后调整变送器零位到标准值。
  2、残存的压力释放不出,因此传感器零位又下不来。排除此原因的最佳方法是将传感器卸下,直接察看零位是否正常,如果正常更换密封圈再试。
  3、加压变送器输出不变化,再加压变送器输出突然变化,泄压变送器零位回不去。 产生此现象的原因极有可能是压力传感器密封圈引起的。
  4、是否符合供电要求;电源与变送器及负载设备之间有无接线错误。如果变送器接线端子上无电压或极性接反均可造成变送器无电压信号输出。
  5、压力传感器及变送器的外壳一般需接地,信号电缆线不得与动力电缆混合铺设,传感器及变送器周围应避免有强电磁干扰。传感器及变送器在使用 变送器(图8)中应按行业规定进行周期检定。
  6、用户在选择压力传感器及变送器时,应充分了解压力测量系统的工况,根据需要合理选择,使系统工作在最佳状态,并可降低工程造价。
  7、通过隔离片和元件内的填充液传送到测量膜片两侧。测量膜片与两侧绝缘片上的电极各组成一个电容器。
  8、压力变送器要求每周检查一次,每个月检验一次,主要是清除仪器内的灰尘,对电器元件认真检查,对输出的电流值要经常校对,压力变送器内部是弱电,一定要同外界强电隔开。
  变送器的种类很多,用在工控仪表上面的变送器主要有温度变送器, 变送器(图9)压力变送器,流量变送器,电流变送器,电压变送器等等。
  变送器在仪器、仪表和工业自动化领域中起着举足轻重的作用。与传感器不同,变送器除了能将非电量转换成可测量的电量外,一般还具有一定的放大作用。
  压力变送器压力变送器也称差变送器,主要由测压元件传感器、模块电路、显示表头、表壳和过程连接件等组成。它能将接收的气体、液体等压力信号转变成标准的电流电压信号,以供给指示报警仪、记录仪、调节器等二次仪表进行测量、指示和过程调节。
  压力变送器测量原理是:流程压力和参考压力分别作 变送器(图10)用于集成硅压力敏感元件的两端,其差压使硅片变形(位移很小,仅μm级),以使硅片上用半导体技术制成的全动态惠斯登电桥在外部电流源驱动下输出正比于压力的mV级电压信号。由于硅材料的强性极佳,所以输出信号的线性度及变差指标均很高。工作时,压力变送器将被测物理量转换成mV级的电压信号,并送往放大倍数很高而又可以互相抵消温度漂移的差动式放大器。放大后的信号经电压电流转换变换成相应的电流信号,再经过非线性校正,最后产生与输入压力成线性对应关系的标准电流电压信号。
  压力变送器根据测压范围可分成一般压力变送器(0.001MPa~20MPa)和微差压变送器(0~30kPa)两种。
  一体化温度变送器一般由测温探头(热电偶或热电阻传感器)和两线制固体电子单元组成。采用固体模块形式将测温探头直接安装在接线盒内,从而形成一体化的变送器。一体化温度变送器一般分为热电阻和热电偶型两种类型。
  热电阻温度变送器是由基准单元、R/V转换单元、线性电路、 变送器(图11)反接保护、限流保护、V/I转换单元等组成。测温热电阻信号转换放大后,再由线性电路对温度与电阻的非线性关系进行补偿,经V/I转换电路后输出一个与被测温度成线性关系的4~20mA的恒流信号。
  热电偶温度变送器一般由基准源、冷端补偿、放大单元、线性化处理、V/I转换、断偶处理、反接保护、限流保护等电路单元组成。它是将热电偶产生的热电势经冷端补偿放大后,再帽由线性电路消除热电势与温度的非线性误差,最后放大转换为4~20mA电流输出信号。为防止热电偶测量中由于电偶断丝而使控温失效造成事故,变送器中还设有断电保护电路。当热电偶断丝或接解不良时,变送器会输出最大值(28mA)以使仪表切断电源。
  一体化温度变送器具有结构简单、节省引线、输出信号大、抗干扰能力强、线性好、显示仪表简单、固体模块抗震防潮、有反接保护和限流保护、工作可靠等优点。
  一体化温度变送器的输出为统一的4~20mA信号;可与微机系统或其它常规仪表匹配使用。也可用户要求做成防爆型或防火型测量仪表。
  浮球式液位变送器由磁性浮球、测量导管、信号单元、 变送器(图12)电子单元、接线盒及安装件组成。
  一般磁性浮球的比重小于0.5,可漂于液面之上并沿测量导管上下移动。导管内装有测量元件,它可以在外磁作用下将被测液位信号转换成正比于液位变化的电阻信号,并将电子单元转换成4~20mA或其它标准信号输出。该变送器为模块电路,具有耐酸、防潮、防震、防腐蚀等优点,电路内部含有恒流反馈电路和内保护电路,可使输出最大电流不超过28mA,因而能够可靠地保护电源并使二次仪表不被损坏。
  浮筒式液位变送器是将磁性浮球改为浮筒,它是根据阿基米德浮力原理设计的。浮筒式液位变送器是利用微小的金属膜应变传感技术来测量液体的液位、界位或密度的。它在工作时可以通过现场按键来进行常规的设定操作
  该变送器利用液体静压力的测量原理工作。它一般选用硅压力测压传感器将测量到的压力转换成电信号,再经放大电路放大和补偿电路补偿,最后以4~20mA或0~10mA电流方式输出。
  电容式物位变送器适用于工业企业在生产过程中进行测量和控制生产过程, 变送器(图13)主要用作类导电与非导电介质的液体液位或粉粒状固体料位的远距离连续测量和指示。
  电容式液位变送器由电容式传感器与电子模块电路组成,它以两线制4~20mA恒定电流输出为基型,经过转换,可以用三线或四线方式输出,输出信号形成为1~5V、0~5V、0~10mA等标准信号。电容传感器由绝缘电极和装有测量介质的圆柱形金属容器组成。当料位上升时,因非导电物料的介电常数明显小于空气的介电常数,所以电容量随着物料高度的变化而变化。变送器的模块电路由基准源、脉宽调制、转换、恒流放大、反馈和限流等单元组成。采用脉宽调特原理进行测量的优点是频率较低,对周围元射频干扰、稳定性好、线性好、无明显温度漂移等。
  超声波变送器分为一般超声波变送器(无表头)和一体化超声波变送器两类,一体化超声波变送器较为常用。
  一体化超声波变更新器由表头(如LCD显示器)和探头两部分组成, 变送器(图14)这种直接输出4~20mA信号的变送器是将小型化的敏感元件(探头)和电子电路组装在一起,从而使体积更小、重量更轻、价格更便宜。超声波变送器可用于液位。物位的测量和开渠、明渠等流量测量,并可用于测量距离。
  锑电极酸度变送器是集PH检测、自动清洗、电信号转换为一体的工业在线分析仪表,它是由锑电极与参考电极组成的PH值测量系统。在被测酸性溶液中,由于锑电极表面会生成三氧化二锑氧化层,这样在金属锑面与三氧化二锑之间会形成电位差。该电位差的大小取决于三所氧化二锑的浓度,该浓度与被测酸性溶液中氢离子的适度相对应。如果把锑、三氧化二锑和水溶液的适度都当作1,其电极电位就可用能斯特公式计算出来。
  锑电极酸度变送器中的固体模块电路由两大部分组成。为了现场作用的安全起见,电源部分采用交流24V为二次仪表供电。这一电源除为清洗电机提供驱动电源外,还应通过电流转换单元转换成相应的直流电压,以供变送电路使用。第二部分是测量变送器电路, 变送器(图15)它把来自传感器的基准信号和PH酸度信号经放大后送给斜率调整和定位调整电路,以使信号内阻降低并可调节。将放大后的PH信号与温度被偿
  信号进行迭加后再差进转换电路,最后输出与PH值相对应的4~20mA恒流电流信号给二次仪表以完成显示并控制PH值。
  酸、碱、盐浓度变送器通过测量溶液电导值来确定浓度。它可以在线连续检测工业过程中酸、碱、盐在水溶液中的浓度含量。这种变送器主要应用于锅炉给水处理、化工溶液的配制以及环保等工业生产过程。
  酸、碱、盐浓度变送器的工作原理是:在一定的范围内,酸碱溶液的浓度与其电导率的大小成比例。因而,只要测出溶液电导率的大小变可得知酸碱浓度的高低。当被测溶液流入专用电导池时,如果忽略电极极化和分布电容,则可以等效为一个纯电阻。在有恒压交变电流流过时, 变送器(图16)其输出电流与电导率成线性关系,而电导率又与溶液中酸、碱浓度成比例关系。因此只要测出溶液电流,便可算出酸、碱、盐的浓度。
  酸、碱、盐浓度变送器主要由电导池、电子模块、显示表头和壳体组成。电子模块电路则由激励电源、电导池、电导放大器、相敏整流器、解调器、温度补偿、过载保护和电流转换等单元组成。
  它是通过测量溶液的电导值来间接测量离子浓度的流程仪表(一体化变送器),可在线连续检测工业过程中水溶液的电导率。
  由于电解质溶液与金属导体一样的电的良导体,因此电流流过电解质溶液时必有电阻作用,且符合欧姆定律。但液体的电阻温度特性与金属导体相反,具有负向温度特性。为区别于金属导体,电解质溶液的导电能力用电导(电阻的倒数)或电导率(电阻率的倒数)来表示。当两个互相绝缘的电极组成电导池时,若在其中间放置待测溶液,并通以恒压交变电流,就形成了电流回路。如果将电压大小和电极尺寸固定,则回路电流与电导率就存在一定的函数关系。这样,测了待测溶液中流过的电流,就能测出待测溶液的电导率。
  电导变送器的结构和电路与酸、碱、盐浓度变送器相同。
  智能式变送器是由传感器和微处理器(微机)相结构而成的。 变送器(图17)它充分利用了微处理器的运算和存储能力,可对传感器的数据进行处理,包括对测量信号的调理(如滤波、放大、A/D转换等)、数据显示、自动校正和自动补偿等。
  微处理器是智能式变送器的核心。它不但可以对测量数据进行计算、存储和数据处理,还可以通过反馈回路对传感器进行调节,以使采集数据达到最佳。由于微处理器具有各种软件和硬件功能,因而它可以完成传统变送器难以完成的任务。所以智能式变送器降低了传感器的制造难度,并在很大程主上提高了传感器的性能。另外,智能式变送器还具有以下特点:
  1、具有自动补偿能力,可通过软件对传感器的非线性、温漂、时漂等进行自动补偿;
  2、可自诊断,通电后可对传感器进行自检,以检查传感器各部分是否正常,并作出判断;
  3、数据处理方便准确,可根据内部程序自动处理数据, 变送器(图18)如进行统计处理、去除异常数值等;
  4、具有双向通信功能。微处理器不但可以接收和处理传感器数据,还可将信息反馈至传感器,从而对测量过程进行调节和控制;
  5、可进行信息存储和记忆,能存储传感器的特征数据、组态信息和补偿特性等;
  6、具有数字量接口输出功能,可将输出的数字信号方便地和计算机或现场总线等连接。[1]
  两线制是指现场变送器与控制室仪表联系仅用两根导线,这两根线既是电源线,又是信号线。
  两线制与三线制(一根正电源线,两根信号线,其中一根共GND) 和四线制(两根正负电源线,两根信号线,其中一根共GND)相比,测量精度较低。
  热电阻是把温度变化转换为电阻值变化的一次元件, 变送器(图19)通常需要把电阻信号通过引线传递到计算机控制装置或者其它一次仪表上。工业用热电阻安装在生产现场,与控制室之间存在一定的距离,因此热电阻的引线对测量结果会有较大的影响。
  线制的分类:
  二线制:在热电阻的两端各连接一根导线来引出电阻信号的方式叫二线制:这种引线方法很简单,但由于连接导线必然存在引线电阻r,r大小与导线的材质和长度的因素有关,因此这种引线方式只适用于测量精度较低的场合;
  三线制:在热电阻的根部的一端连接一根引线,另一端连接两根引线的方式称为三线制,这种方式通常与电桥配套使用,可以较好的消除引线电阻的影响,是工业过程控制中的最常用的;
  四线制:在热电阻的根部两端各连接两根导线的方式称为四线制,其中两根引线为热电阻提供恒定电流I,把R转换成电压信号U,再通过另两根引线把U引至二次仪表。可见这种引线方式可完全消除引线的电阻影响,主要用于高精度的温度检测。
  热电阻采用三线制接法。采用三线制是为了消除连接导线电 变送器(图20)阻引起的测量误差。这是因为测量热电阻的电路一般是不平衡电桥。热电阻作为电桥的一个桥臂电阻,其连接导线(从热电阻到中控室)也成为桥臂电阻的一部分,这一部分电阻是未知的
  且随环境温度变化,造成测量误差。采用三线制,将导线一根接到电桥的电源端,其余两根分别接到热电阻所在的桥臂及与其相邻的桥臂上,这样消除了导线线路电阻带来的测量误差。
  两线制优点:
  1、不易受寄生热电偶和沿电线电阻压降和温漂的影响,可用非常便宜的更细的导线;可节省大量电缆线和安装费用;
  2、在电流源输出电阻足够大时,经磁场耦合感应到导线环路内的电压,不会产生显著影响,因为干扰源引起的电流极小,一般利用双绞线就能降低干扰;三线制与四线制必须用屏蔽线,屏蔽线的屏蔽层要妥善接地。
  3、电容性干扰会导致接收器电阻有关误差,对于4~20mA两线制环路,接收器电阻通常为250Ω(取样Uout=1~5V)这个电阻小到不足以产生显著误差,因此,可以允许的电线长度比电压遥测系统更长更远;
  4、各个单台示读装置或记录装置可以在电线长度不等的不同通道间进行换接,不因电线长度的不等而造成精度的差异,实现分散采集,分散式采集的好处就是:分散采集,集中控制….
  5、将4mA用于零电平,使判断开路与短路或传感器损坏(0mA状态)十分方便。
  6、在两线输出口非常容易增设一两只防雷防浪涌器件,有利于安全防雷防爆。
  三线制和四线制变送器均不具上述优点即将被两线制变送器所取代, 不同种类的变送器(24张)从国外的行业动态及变送器芯片供求量即可略知一斑,电流变送器在使用时要安装在现场设备的动力线上,而以单片机为核心的监测系统则位于较远离设备现场的监控室里,两者一般相距几十到几百米甚至更远。设备现场的环境较为恶劣,强电信号会产生各种电磁干扰,雷电感应会产生强浪涌脉冲,在这种情况下,单片机应用系统中遇到的一个棘手问题就是如何在恶劣环境下远距离可靠地传送微小信号。
  两线制电流变送器的输出为4~20mA,通过250Ω的精密电阻转换成1~5V或2-10V的模拟电压信号.转换成数字信号有多种方法,如果系统是在环境较为恶劣的工业现场长期使用,因此需考虑硬件系统工作的安全性和可靠性。系统的输入模块采用压频转换器件LM231将模拟电压信号转换成频率信号,用光电耦合器件TL117进行模拟量与数字量的隔离。
  同时模拟信号处理电路与数字信号处理电路分别使用两组独立的电源,模拟地与数字地相互分开,这样可提高系统工作的安全性。利用压频转换器件LM231也有一定的抗高频干扰的作用。
  在单片机控制的许多应用场合,都要使用变送器来将单片机不能直接测量的信号转换成单片机可以处理的电模拟信号,如电流变送器、压力变送器、温度变送器、流量变送器等。
  早期的变送器大多为电压输出型,即将测量信号转换为0-5V电压输出,这是运放直接输出,信号功率