有理数有哪些(同类项合并的要求有哪些)

有理数

1.1 正数与负数

正数:大于0的数叫正数。(根据需要,有时在正数前面也加上“ ”)

负数:在以前学过的0以外的数前面加上负号“—”的数叫负数。与正数具有相反意义。

0既不是正数也不是负数。0是正数和负数的分界,是唯一的中性数。

1.2 有理数

1、有理数:整数和分数统称有理数。

2、数轴 :通常用一条直线上的点表示数,这条直线叫数轴;所有的有理数都可以用数轴上的点表示出来,但数轴上的点,不都是表示有理数。

3、相反数:只有符号不同的两个数叫做互为相反数。

4、绝对值:数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。

1.3 有理数的加减法

有理数加法法则:

1、同号两数相加,取相同的符号,并把绝对值相加。

2、绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。

3、一个数同0相加,仍得这个数

4、加法交换律:a b=b a

5、加法结合律:a b c=a (b c)=(a c) b

有理数减法法则:

减去一个数,等于加这个数的相反数。

1.4 有理数的乘除法

1、有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;

乘法交换律:a*b=b*a

结合律:a*b*c=a*(b*c)

分配律:a(b c)=ab ac

2、有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数;

两数相除,同号得正,异号得负,并把绝对值相除;

0除以任何一个不等于0的数,都得0。

1.5 有理数的乘方

1、求n个相同因数的积的运算,叫乘方,乘方的结果叫幂。在a的n次方中,a叫做底数,n叫做指数。负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何次幂都是0。

2、有理数的混合运算法则:先乘方,再乘除,最后加减;同级运算,从左到右进行;如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。

3、把一个大于10的数表示成a×10的n次方的形式,使用的就是科学计数法,注意a的范围为1≤a